
MHDeS: Deduplicating Method Handle Graphs for
Efficient Dynamic JVM Language Implementations

Shijie Xu and David Bremner
IBM Centre for Advanced Studies (CAS

Atlantic)
University of New Brunswick, Canada

{sxu3, bremner}@unb.ca

Daniel Heidinga
IBM Ottawa, 770 Palladium Dr
Ottawa, ON, Canada, K2V 1C8

Daniel_Heidinga@ca.ibm.com

ABSTRACT
A method handle (MH) is a reference to an underlying
Java method with potential method type transforma-
tions. Multiple inter-connected method handles form a
method handle graph (MHG). Together with the Java
Virtual Machine (JVM) instruction, invokedynamic, the
implementation of MHGs is significant to dynamically
typed language implementations on the JVM.

Addressing the abundance of equivalent MHGs dur-
ing program runtime, this paper presents an MHG equiv-
alence model and an online Method Handle Deduplica-
tion System (MHDeS). The equivalence model deter-
mines the equivalence of two MHGs in terms of two
kinds of keys, i.e., MH key and MHG key, which uniquely
identify the transformation of an MH and an MHG, re-
spectively. MHDeS is an implementation of the equiv-
alence model. Instead of creating equivalent MHGs
and then detecting their equivalence, MHDeS employs
a light-weight structure, the MHG index key, which
wraps constructor parameters of an MH. MHDeS uses
a transformation index, fast-path comparison, and fil-
ters, to speed up the equivalence detection of an MHG
index key. Our experimental results with the Computer
Language Benchmark Game (CLBG) JRuby micro-indy
show that 1) MHDeS with filtering off can speed up
the benchmark by 4.67% and reduces memory usage by
7.19% on average; 2) the deduplication result can be af-
fected by the choice of MH transformations for filtering;
3) MHDeS can have the MH JIT compilation performed
earlier; and 4) as much as 32% of MHG index keys are
detected as non-unique and eliminated by MHDeS, and
the expense for a single detection is trivial.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

ICOOOLPS’16, July 18 2016, Rome, Italy
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-4837-9/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/3012408.3012412

Keywords
invokedynamic, dynamic JVM language, method han-
dle, deduplication, graph key, graph matching

1. INTRODUCTION
Compiling dynamically typed languages into typed

JVM bytecodes involves many “pain points” [1, 21, 4].
To emit typed JVM bytecodes, an operand’s type infor-
mation has to be determined before compilation, which
is impossible for dynamically typed languages. Conse-
quently, for a dynamic method call, interpreters (e.g.,
JRuby) atop JVM have to employ extra indirections
(e.g., Reflection) to retrieve the right types for method
linkage. These indirections might defeat JVM attempts
to predict and inline call targets. Addressing these“pain
points”, JSR292 proposes method handles and the in-
vokedynamic instruction, allowing customized method
linkage.

1.1 Method Handle and Method Handle
Graph

A method handle (MH) is a typed, directly executable
reference to an underlying method, constructor, field, or
similar low-level operation, with optional transforma-
tions of arguments or return values [7]. These transfor-
mations include method argument insertion, removal,
and substitution, and their implementations are pro-
vided by MH’s APIs, such as dropArguments, insertAr-
guments and guardWithTest, in [8].

An MH has a type (i.e., method type), specifying
the argument and return types of the MH. Its trans-
formation comes along with an MH’s execution when
its invoker methods (e.g., invokeExact) are called. The
sample code in Listing 1 shows how to build MHs (dy-
namic language interpreters atop the JVM build MHs
in a similar way and link them to dynamic sites). In
the sample, the MH g ’s type is ()boolean. Another
FilterReturnhandle d0 filters gwt ’s return value by f,
which appends “yahoo” to the parameter.

As a Java method referenced by an MH can have mul-
tiple references to other MHs, multiple inter-connected
MHs form a directed Method Handle Graph (MHG) [24].

Figure 1: MHG sample

In an MHG, a node represents a method handle in-
stance; a directed edge represents that the method ref-
erenced by the source MH has a reference to the target
MH; and a label associated with the edge is the reference
name of the target MH. According to JSR292, an MHG
is responsible for transferring a dynamic invocation to a
number of real method invocations via transformations.
For example, d0 and gwt in Figure 1, corresponding to
Listing 1, represent FilterReturn and GuardWithTest
transformation, respectively. This MHG transfers the
invocation at d0 to f, g, and either of t and f finally.

MethodHandle g = lookup () . f i n d V i r t u a l (
S t r ing . class , ”isEmpty ” , methodType (
boolean . class)) ;

MethodHandle t = lookup () . f i n d S t a t i c (
Some , ”addYahoo ” , methodType (St r ing .
class , S t r ing . class)) ; // append
g o o g l e to the t a i l .

MethodHandle f = lookup () . f i n d S t a t i c (
Other , ”addGoogle ” , methodType (
St r ing . class , S t r ing . class)) ; //
Append yahoo to the t a i l .

MethodHandle gwt = MethodHandles .
guardWithTest (g , t , f) ;

MethodHandle d0 = MethodHandles .
f i l t e r R e t u r n (gwt , f) ;

a s s e r tEqua l s ((S t r ing) d0 . invokeExact (‘ ‘
s t r ’ ’) , ‘ ‘ S t r g o o g l e g o o g l e ’ ’) ;

a s s e r tEqua l s ((S t r ing) d0 . invokeExact (‘ ‘ ’
’) , ‘ ‘ yahoogoogle ’ ’) ;

Listing 1: Method Handle Graph

1.2 Motivation
A key optimization is MHG deduplication, which de-

tects and eliminates equivalent MHGs—MHGs having
similar graph structure and corresponding nodes with
equivalent attributes1—at program runtime. This idea
is directly motivated by the finding that as much as
28.87% of method handles are detected to start similar
MHGs [24]. Intuitively, the existence of these equiv-
alent MHGs at runtime burdens a program’s memory
usage, and slows down its execution, due to repeated
constructions of equivalent MHGs.

1Similarly, equivalent MHs mean that the graphs start-
ing from those MHs are equivalent.

MHG a

MHG b

MHG c

MHG a’

MHG b’

MHG c’

native code

native code

native code

10

10

10

30

30

30

MHG b

MHG c

10

MHG a

X 10

native code

10

jit

X

No deduplication

With Deduplication

jit

No Jit

No Jit

No Jit

Case 1
Case 2

10+ +10=30

Figure 2: MHG JIT sample

An MHG Just-In-Time (JIT) compilation is an MHG
translation from bytecode to machine code, when the
number of its invocations exceeds a given threshold.
This translation in prevalent compilers (e.g., Testarossa
(TR) in IBM J9 [17], Jalapeno in the Jikes VM [11, 12]
and Client/Server compiler in HotSpot) normally takes
two phases. In J9, an MH is translated into a compiled
version, called a shared thunk, if it is frequently exe-
cuted (e.g., its invocationCount exceeds a threshold).
To reduce the repeated transitions between compiled
MH and interpreted MH, these compiled MH versions
of a graph are later inlined together as a single native
method (i.e., custom thunk) [9], which is set as a mem-
ber of the root MH or a dynamic site. In other words, an
inlined MHG is exclusively used by the root MH in the
graph or a site, and is not shared among MHGs. The
conclusion from Client/Server compiler in HotSpot [23]
is also similar.

Owing to this lack of inlined MHG sharing, the abun-
dance of equivalent MHGs constrains the exploitation
of JIT compilation. As shown in Figure 2, three equiv-
alent MHGs, a, b, and c, are not eligible for JIT compi-
lation in Case 1, because all of their invocationCounts
are less than the JIT threshold, i.e., 30. Similarly, three
other equivalent MHGs, a’, b’, and c’, are JITted sep-
arately as each MHG is executed 30 times, which re-
sults in three complete JIT compilations for the same
bytecodes and three equivalent compiled codes. Thus,
a motivation for equivalent MHG deduplication is to
avoid redundant JITted MHGs by substituting a for b
and c, so that all invocationCounts can be aggregated,
as shown in with deduplication part in Figure 2. This
would also drive earlier JIT compilation of a since a’s
invocationCount will more easily reach the threshold.

This paper provides an MHG equivalence model and
an online MHG Deduplication System (MHDeS). In the
paper, two kinds of keys, MH key and MHG key, are in-
troduced to uniquely identify an MH’s transformation
and an MHG’s transformation, respectively. MHDeS
implements the equivalence model in J9 (it is also portable
to other JVMs as it does not use any J9 specific APIs),
and it consists of a Method Handle Pool (MH pool), a
purger, a detector, and filters. MHDeS organizes all de-

tected unique MHs in the MH pool, and employs MHG
index key, a light-weight structure that wraps construc-
tor parameters of an MH, to represent an MH about
to be created. By comparing whether an MHG in-
dex key is equivalent to an existing MH in the pool,
MHDeS reduces the number of recursive traversals and
avoids creating an equivalent MH. To minimize its mem-
ory burden, MHDeS also purges infrequently matched
MHGs from MH Pool at runtime. Tested with the
Computer Language Benchmark Game (CLBG) JRuby
Micro-indy benchmark [3], our results show that 1) MHDeS
can speed up this benchmark by 4.67% and reduce mem-
ory usage by 7.19%; 2) the deduplication result can be
changed dramatically by choosing MH transformations
for filtering carefully; 3) MHDeS can have the MH JIT
compilation performed earlier; and 4) as much as 32% of
MHG index keys are detected as non-unique and elim-
inated by MHDeS, and the mean expense for a single
detection is less than 1ms for the majority of tests.

1.3 Contribution

• We formulate a graph equivalence model that de-
fines two MHGs’ equivalence by their MHG keys.
Based on the model, we show that the complexity
of finding equivalent sub-MHGs for a given MHG
is only quadratic in the MHG’s size.

• MHDeS improves the equivalence model by 1) an
MHG index key that avoids creating equivalent
MHs at program runtime; 2) a transformation in-
dex that speeds up transformation chain lookup
and reduces the MHG comparison space; and 3)
a fast-path comparison and an MH pool that pre-
vents time-consuming graph traversal by detecting
non-equivalent MHGs as early as possible.

• We quantify the analysis of MHDeS performance
in terms of CPU time, memory usage, MHG re-
duction effectiveness and time expense for dedu-
plication.

The rest of this paper is organized as follows. Sec-
tion 2 presents the equivalence model. Section 3 overviews
MHDeS and design decisions. Section 4 shows evalua-
tion results from perspectives of measures and MHDeS
expense. Section 5 and 6 provide related work and fu-
ture work, respectively. Finally Section 7 concludes this
paper.

2. MODEL

2.1 Method Handle Graph (MHG)
A method handle graph has following features

• An MHG has only one root, via which all MHs are
accessible. In this paper, an MHG is represented
by its root MH.

Figure 3: Equivalent MHG sample

• The leaves of sub-MHGs are a subset of the origi-
nal MHG’s leaves.

• Most MHGs (the MHGs that can be linked to a
MutableCallSite are the exception) are constant
once they are created.

In this paper, Gmh(V,E) defines an MHG starting
from root MH mh, where V is a set of MHs and E
is a set of directed edges that connect these method
handles together. The creation of an MHG involves the
creation of individual MHs in the graph and edges’ setup
among these MHs. The creation of terminal MHs can be
completed via a reflective API MethodHandles.Lookup
while non-terminal MH creation involves invokespecial
invocations and a number of method type checks.

Equivalent MHGs are graphs that have similar graph
structure and the corresponding MH nodes with the
same transformation. For example, there are three MHGs
in Figure 3 and only two of them, GN0 and GN0′ are
equivalent.

2.2 MH Key and MHG Key

Method Handle (MH) key.
An MH key, MH keymh, is a unique identifier for an

MH. It is made up of an MH’s transformation name, a
method type that the transformation applies to, and op-
tional data. The transformation characterizes the type
of the transformation, and it is the API that creates
this MH, e.g., guardWithTest, insertArguments, filter-
Return, if it is not a terminal MH. The optional pa-
rameters are only necessary for some special transfor-
mations. For example, the insertArguments transfor-
mation requires the existence of two variables: pos, the
position where the insert occurs, and values, an array
that indicates what to insert. For a terminal MH (e.g.,
a DirectHandle) that does not have any transformation,
its transformation is null.

Method Handle Graph Key.
An MHG key, MHG keymh is associated with the root

MH, mh, of an MHG, and uniquely identifies the trans-
formation that the whole MHG performs. Different
from an MH key, an MHG key is made up of MH keys
of all method handles in the graph, and their connec-
tions. In this paper, the MHG key for graph Gmh(V,E)

is defined as

MHG keymh =

{
MH keymh, if mh is a terminal MH

{MH keymh,Smh}
(1)

where Smh is mh’s ordered set of child MHs, where child
order is customized by mh’s transformation. For exam-
ple, guardWithTest has three children and its Smh is a
list [guard, target, fallback], while Smh of filterReturn is
[next, filter] instead of [filter, next].

Thus, an MHG can be represented by its MHG key,
which is recursively built from MH keys and the struc-
ture of the graph. Two MHGs can be classified as equiv-
alent if both MHG keys are equivalent, while the equiv-
alence of two MHs, both of which have the same MH
keys, does not mean that the graphs starting from both
are equivalent.

2.3 MHG Equivalence Model
Our method handle equivalence solves two questions.

Are two given MHGs equivalent?.
The model defines an MH equivalence function F :

(m,n) → {1, 0}, where m and n are the roots of MHG
Gm and Gn, respectively. If F (m,n) = 1, then the
MHGs Gm and Gn are also equivalent. The equivalence
MH function F (m,n) can be formulated as

F (m,n) = (m = n)∨(f ′(m,n)∧(f ′′(m) = f ′′(n))) (2)

where f ′′(m) = MH keym. The function f ′(m,n) com-
pares Sm and Sn, of the MHs m and n. Together with
MH key, a simplified f ′(m,n) is shown in Equation 3.

f ′(m,n) =

|Sm|∧
i=1

F (Sm(i), Sn(i)),

if Sm 6= ∅ ∧ Sn 6= ∅ ∧ |Sm| = |Sn|
1, Sm = Sn = ∅
0, otherwise

(3)
Based on Equation 2, the complexity to determine

two MHs’ equivalence is only O(|G|) since MHs in a
child MH set are ordered in advance.

Do equivalent sub-MHGs exist?.
Based on the previous conclusion, this question can

be answered by comparing the given MHG to individual
MHGs in the potential sub-MHG set.

This problem is not NP hard. Assume the given MHG
with n MHs, the target MHG with m MHs (m � n).
First, according to MHG’s features in Section 2.1, there
are at most m sub-MHG pairs to compare (one is the
given MHG and the other is a sub-MHG from the target
MHG). Second, for each pair, the complexity of compar-
ison is O(n), that is the total number of MH nodes in
the given MHG. Thus, the total complexity is O(n∗m),
which can be simplified as O(m2).

3. SYSTEM DESIGN
This section discusses our prototype design, Method

Handle Deduplication System (MHDeS), which is capa-
ble of deduplicating equivalent method handles at pro-
gram runtime, and our implementation decisions. In-
stead of conducting equivalence detection for method
handles directly, MHDeS determines uniqueness of a
method handle about to be created by its MHG index
key (Section 3.2), and creates this method handle only if
it is unique after detection. MHDeS extends the MHG
equivalence model by 1) reducing detection overhead by
only comparing the MHs with the same transformation
in the pool, 2) an MHG index key, and 3) a fast-path
comparison to avoid unnecessary comparison by detect-
ing non-equivalent MHs as early as possible.

MHDeS consists of two layers. The lower layer mainly
consists of three components: the MH pool, the purger
thread (purger), and configurations. MH pool organizes
all unique method handle references at runtime; the
purger thread periodically removes MH references that
are not frequently hit during comparison. The higher
layer is mainly made up of a detector and a number of
filters associated with the detector.

3.1 MH Pool
As shown in Figure 4, the MH pool organizes all

unique MHs as MHObjects. An MHObject consists of
a weak MH reference and an integer count. The former
holds a reference to a unique MH without blocking its
Garbage Collection (GC), and the latter indicates the
number of times the corresponding MH has been hit
during equivalence detection.

The MH pool mainly consists of a transformation in-
dex and MHObject chains. In the pool, all detected
unique MHs (MHObjects) that have the same trans-
formation type are connected as a chain in descending
order by their counts. Similar to the MHObject, each
chain is labeled with maxCount, which indicates the
maximum count value that MHObjects on the chain
have. The MHObject chain is always constructed with
a single MH when the corresponding transformation
name is missed in the transformation index, and is up-
dated when a new unique MHObject is inserted into the
correct position in the chain or existing MHObjects are
purged.

Transformation Index.
The transformation index is used to index MHOb-

ject chains by the transformation name (for a terminal
MH, it is MH’s class name (e.g., DirectHandle and Vir-
tualHandle). As shown in Figure 4, the chain with 10
MHObjects of InsertArguments is indexed by one trans-
formation name InsertArgument. With the transforma-
tion index, an MHObject chain can be retrieved in one
hash table lookup, and a method handle or MHG index
key is only compared to MHs in the MHObject chain
that have the same transformation type as the given

Figure 4: MH Pool Overview

MH.

3.2 Detector
Based on the MH pool, the Detector determines whether

an MH about to be created is equivalent to any existing
method handle in the pool and deduplicates it if it is
equivalent to an existing one. Instead of creating the
MH and then comparing it to existing MHs in the pool,
the Detector uses an MHG index key, an object that
wraps all necessary arguments for creation of that MH,
to existing MHs in the pool. If none of the existing MHs
in the pool is matched, then the new method handle is
created according to the MHG index key and added to
the MH pool.

MHG index key.
The motivation for the MHG index key is to avoid

wasting CPU and memory resources on non-unique MHs.
First, creation of an MHG involves a number of MH
creations from the leaves to the root of an MHG. That
means, the MHs at the bottom of the graph are first con-
structed, and then these newly created MHs are passed
to MethodHandles APIs (e.g., guardWithTest) as argu-
ments to create higher MHs in the MHG. Second, using
Equation 2 for equivalence comparison requires the ex-
istence of MHs first, and to have it not referenced by
any existing MHs if it is non-unique, so that these iso-
lated MHs can be garbage collected later. Considering
the effort of constructing higher MHs in an MHG (i.e., a
number of method type checks and invokespecial invo-
cations) and the GC, much of this effort for non-unique
MHs can be avoided by using MHG index keys.

An MHG index key is a data object that holds all ar-
guments for a new concrete MH construction, and it can
completely represent the MH that can be created from
this key. This index key is made up of a transformation
(cls), an MH key (mhKey), and its ordered child MHs
(children). For example, the children in an MHG index
key of GuardWithTest are [guard, trueTarget, falseTar-
get], while some other necessary arguments for transfor-
mation, e.g., [pos, objects[]] for insertArgument trans-
formation, have been embedded in the mhKey. Termi-
nal MHs (leaves) don’t have any MHG index key since
they do not have any transformation.

Detection Procedure.
Based on the MHG index key, the new MH equiva-

lence function becomes

F (m,n) = (m = n)∨ (f ′(iKey, n)∧f ′′(iKey) = f ′′(n))
(4)

and

f ′(iKey, n) =

|Sn|∧
i=1

F (SiKey(i), Sn(i)) |SiKey| = |Sn|

0 f ′′(iKey) 6= f ′′(n)

(5)
where the iKey is the MHG index key of the MH, m,
to be created, and n is an existing MH with the same
transformation in the pool. The complete detection pro-
cedure is shown in Algorithm 1.

In Algorithm 1, there are two kinds of comparisons:
fast-path comparison and slow-path comparison.

Fast-Path comparison.
A fast-path comparison only compares the equiva-

lence of MH keys. In Algorithm 1, for an MHObject in
the chain, its MH key is retrieved and compared to that
of the newly created MHG index key. Slow-path com-
parison will only be possible when the fast-path com-
parison succeeds. Thus, the fast-path comparison is an
early detection of un-matched MHs to avoid the unnec-
essary cost of slow-path comparison.

Slow-path comparison.
Slow-path comparison compares an index key (ex-

cluding its MH key) to existing MHs in the MH pool.
For each MH in the children of the index key, it is com-
pared to an existing MH in the pool by the method
equals, which returns true only if both tested and mh in
Algorithm 1 are the same MH instance, or their MHG
keys are equivalent according to Equation 2.

The overhead of the recursive equivalence calculation
using Equation 2 is largely reduced by the MH pool.
This is because most children of an index key are unique
MHs and have been placed in the pool. Thus, a com-
parison result can be quickly made by testing whether
both are the same instance, and the true is returned if
they are. For example, the MH f in the MHG index key

in Figure 4 refers to the MH instance which is unique
and has already in the pool.

Algorithm 1 Equivalence detection and elimination

1: procedure getUnique(cls, mhKey, children,
args)

2: if !filter on() or (filter on() and cls is not fil-
tered) then

3: indexkey = MHGIndexKey.create(cls,
mhKey, children, args);

4: mhList= MH Pool.get(cls)
5: for all MHObect mho: mhList do
6: key=mho.getMHKey()
7: if !key.equal(indexkey.getMHKey())

then . fast-path f ′′

8: Continue
9: end if . slow-path f ′ now

10: i=0
11: while i < mho.getChilds().size() do
12: tested = mho.getChild(i)
13: mh = get ith child of indexKey
14: if !tested.equals(mh) then
15: break
16: end if
17: i++
18: end while
19: if i < mho.getChilds().size() then
20: mho.incr(); return mho.getMH()
21: end if
22: end for
23: end if
24: mh = cls.newInstance(args, MHs)
25: mh.cacheMHIndexKey(indexKey) . cache the

indexKey
26: Add mh to the tail of mhList

return mh
27: end procedure

3.3 Filtering
MHDeS provides filter APIs to exclude some trans-

formations for deduplication, so that the expense and
effectiveness of deduplication can be balanced. Accord-
ing to the finding by Xu et al. [24], equivalent MH ratios
of different kinds of method handles—the number of
equivalent method handle pairs to the total number of
pairs of that kind method handle—vary sharply. Thus,
for those kinds of method handles, which have small
equivalent MH ratios, their transformation names can
be filtered out directly to avoid the detection cost of
these transformations as the potential improvement is
trivial.

3.4 Purge
Both MHObjects and transformation chains are checked

periodically and removed if they are rarely matched dur-
ing detection. The purges of both kinds of object are
conducted in the purge thread which is scheduled at an
interval of 5 seconds.

MHObject Purge.

This operation only removes cold MHObjects, the
count values of which are less than the given threshold.
In the pool, different method handles, represented by
the MHObjects, have varied hotness, and a cold MHOb-
ject is unlikely to match any MHG index keys during
detection. Along with the purge, the chain is re-sorted
again by MHObject’s count. Instead of sorting it during
detection, the re-sort operation following purge aims to
reduce potential waiting time caused by MHDeS.

Transformation Chain Purge.
Similar to the MHObject purge, the transformation

chain purge aims to remove the whole transformation
chain when all MHObjects in the chain are cold. Dur-
ing chain purge, if maxCount is below a threshold, the
whole chain will be removed.

4. EVALUATION
In this section, we first describe experimental back-

ground. Then we analyze MHDeS’ impact in terms of
elapsed CPU time, memory, JIT compilation for our
benchmark. We also evaluate deduplication effective-
ness and the overhead of MHDeS at the program run-
time.

We run the JRuby micro-indy benchmark in CLBG [3]
atop IBM J9 Java 8. CLBG contains 41 Ruby tests, and
most of these tests’ lengths are between 10 and 50 lines.
When seeing an invokedynamic instruction, JVM calls
the corresponding bootstrap method, which in turn uses
MHDeS to create new MHs. Regarding filtering, two
arbitrary transformations are chosen blindly and con-
figured in the MHDeS.

4.1 Performance Impact
The elapsed CPU time, CPU Time, is one of the

key measurements for program performance compari-
son, and it is measured when a test ends as the seconds
passed after the start of this test. In theory, for a test
with only a single thread, CPU Time is

CPU time =

n1∑
i=1

T inti +

n2∑
i=1

T exei +

n3∑
i=1

T gci (6)

and the definitions of the variables are shown in Ta-
ble 1. In this Equation, MHDeS impacts the CPU time
by changing bytecode

∑n1

i=1 T inti, which in turn results
in changes of the other three components. For the byte-
code interpretation, the added overhead of MHDeS is
the execution of deduplication, while the reduced over-
head is the creation of equivalent MHGs and the inter-
pretation of the MHGs, the JIT of which occur earlier.

Figure 5 shows our comparison results and perfor-
mance improvements made by MHDeS, respectively. In
these figures, the bars labeled with MHDeS represent
the data with MHDeS, while the ones with Orig repre-
sent the runtime without MHDeS. In Figure 5a 5b , the

m
ergesort_hongli

so_object
gc_m

b
socket_transfer_1m

b
app_factorial
string_concat
printff
so_lists
so_lists_sm

all
w

ord_anagram
s

fasta
count_m

ultithreaded
app_m

andelbrot
prim

es
nbody
app_fib
socket_transfer_1m

b_noblock
nsieve_bits
gc_string
sim

ple_server
gc_array
cal
spectral_norm
app_pentom

ino
so_sieve
eval
so_m

atrix
m

bari_bogus1
fractal
sim

ple_connect
partial_sum

s
pi so_array
count_shared_thread
fiber_ring
list
binary_trees
app_tarai
m

onte_carlo_pi
observ
w

rite_large

−10

0

10

20

30

40

50

60

70

80
Im

pr
ov

ed
 P

er
fo

rm
an

ce
(%

)

0 0

-4-2

1 0 1

-2-4

14

1

36

3

-6-6

0

0

2
8

0 0 3
0

-1

0 0

77

-5

1

-3

4 2

0

5

0

24

3

29

0 3 1

(a) Filtering Off + CPU ip (Median: 0.9%, Mean: 4.67%,
std:14.48)

m
ergesort_hongli

so_object
gc_m

b
socket_transfer_1m

b
app_factorial
string_concat
printff
so_lists
so_lists_sm

all
w

ord_anagram
s

fasta
count_m

ultithreaded
app_m

andelbrot
prim

es
nbody
app_fib
socket_transfer_1m

b_noblock
nsieve_bits
gc_string
sim

ple_server
gc_array
cal
spectral_norm
app_pentom

ino
so_sieve
eval
so_m

atrix
m

bari_bogus1
fractal
sim

ple_connect
partial_sum

s
pi so_array
count_shared_thread
fiber_ring
list
binary_trees
app_tarai
m

onte_carlo_pi
observ
w

rite_large

−5

0

5

10

15

20

25

30

Im
pr

ov
ed

 P
er

fo
rm

an
ce

(%
)

0

0
2

0

7

0 1

0

0 1 1

9 8
5

1

-1

2 1 0 1

7
5

25

-3

0 0

8

1
0 1

-2-3

6 7

0

4 4
2

-2

3 3

(b) Filtering On + CPU ip (Median: 1.55%, Mean: 2.77%, std:
4.84)

Figure 5: CPU time performance comparison

T inti Time expense on interpreting a bytecode;

n1 the number of interpreted bytecodes.

T exei Time expense on executing a JITted code;

n2 the number of executed native code instructions.

T gci Paused time when doing a global GC

n3 the number of global GCs.

Table 1: Variables for Elapsed CPU Time

y axis is improved performance ip, which is evaluated
as

CPU timeOrig − CPU timeMHDeS

CPU timeOrig
∗ 100% (7)

According to Figure 5, MHDeS speeds up benchmark’s
execution on average. In the figure, the average speedups
are 4.67% and 2.77% when filtering is off and on, respec-
tively. Though these average improvements are only
moderate, the improvements of the deduplication on
tests varies. For example, the maximal execution speedup
can reach as high as 77%, and the minimal speedup is
only -6% when filtering is off. This dramatic change
in improvement is caused by the varieties of different
MHG constructors among individual tests. Different
tests have their preferences for MHG transformations,
and the overhead to interpret and deduplicate these
MHG transformations also varies. For example, there
is rarely any MHG transformations in tests eval and
so sieve, while there are more than 8 kinds of transfor-
mations in the test so matrix.

The transformation for filtering has significant im-
pact on the elapsed CPU time, and should be carefully
chosen to maximize potential performance speedup. As

m
ergesort_hongli

so_object
gc_m

b
socket_transfer_1m

b
app_factorial
string_concat
printff
so_lists
so_lists_sm

all
w

ord_anagram
s

fasta
count_m

ultithreaded
app_m

andelbrot
prim

es
nbody
app_fib
socket_transfer_1m

b_noblock
nsieve_bits
gc_string
sim

ple_server
gc_array
cal
spectral_norm
app_pentom

ino
so_sieve
eval
so_m

atrix
m

bari_bogus1
fractal
sim

ple_connect
partial_sum

s
pi so_array
count_shared_thread
fiber_ring
list
binary_trees
app_tarai
m

onte_carlo_pi
observ
w

rite_large

−50

−40

−30

−20

−10

0

10

20

30

40
Re

du
ce

d
M

em
or

y
w

ith
 M

HD
es

 (%
)

1311101014

32

5 7
3

13

1

-4

6

17

2

14

-1

5
910

1413

-2

0

1114

4

-41

9
13

7
1212

5

-2

0

11
17

2

-3

11

Figure 6: Memory usage, (Median: 9.84%, Mean:
7.19%)

shown in Figure 5b, the ip’s deviation is reduced from
14.48 to 4.85 when filtering is on, which makes ip’s dis-
tribution among different tests more smooth. For indi-
vidual tests in Figure 5b, the ip for so matrix is reduced
from 77% to 8%, while it increases from 0.5% to 25% for
spectral norm when filtering is on. This change can be
explained by the distinction of the transformation com-
bination and its deduplication expense. For example,
compared to so matrix, the MHG for spectral norm has
more GuardWithTest MHs, which is more expensive for
deduplication than the AsType transformation.

4.2 Memory Impact
The evaluated memory measures are memory usage

-120

-100

-80

-60

-40

-20

 0

 20

 40

a
p
p
_
p
e
n
to

m
in

o
m

o
n
te

_
c
a
rlo

_
p
i

s
o
_
a
rra

y
g
c
_
s
trin

g
c
o
u
n
t_

m
u
ltith

re
a
d
e
d

a
p
p
_
ta

ra
i

c
o
u
n
t_

s
h
a
re

d
_
th

re
a
d

s
o
_
o
b
je

c
t

o
b
s
e
rv

n
s
ie

v
e
_
b
its

e
v
a
l

w
rite

_
la

rg
e

s
trin

g
_
c
o
n
c
a
t

m
e
rg

e
s
o
rt_

h
o
n
g
li

n
b
o
d
y

fib
e
r_

rin
g

g
c
_
a
rra

y
p
rin

tff
p
a
rtia

l_
s
u
m

s
fa

s
ta

w
o
rd

_
a
n
a
g
ra

m
s

lis
t

g
c
_
m

b
s
im

p
le

_
c
o
n
n
e
c
t

b
in

a
ry

_
tre

e
s

c
a
l

a
p
p
_
fa

c
to

ria
l

a
p
p
_
fib

s
o
_
lis

ts
_
s
m

a
ll

s
o
_
m

a
trix

s
o
_
s
ie

v
e

p
i

s
o
_
lis

ts
a
p
p
_
m

a
n
d
e
lb

ro
t

s
o
c
k
e
t_

tra
n
s
fe

r_
1
m

b
_
n
o
b
lo

c
k

p
rim

e
s

s
p
e
c
tra

l_
n
o
rm

fra
c
ta

l
s
im

p
le

_
s
e
rv

e
r

s
o
c
k
e
t_

tra
n
s
fe

r_
1
m

b

m
b
a
ri_

b
o
g
u
s
1

R
e

d
u

c
e

d
 G

C
 P

a
u

s
e

d
 T

im
e

 (
%

)

Figure 7: GC Paused Time, Filtering Off (Mean:
1.65%)

and GC pause time. On one side, MHDeS alleviates
memory consumption as it reduces the occurrences of
equivalent MHG creation. On the other side, it creates
extra temporary objects, e.g., MHObjects, MHG index
keys, etc, during equivalence detection and holds them
in the pool, which in turn increases the amount of work
for a GC.

The GC policy used in our experiment is the de-
fault gencon [5], which aims to maximize throughput.
With this policy, a heap is divided into a nursery and a
tenured area, and objects are first created in the nurs-
ery and promoted to the tenured area if these objects
survive a certain number of GCs. In the experiment,
we configure the JVM to log all GCs (e.g., the occupied
memory, time, duration) for analysis.

Memory usage.
Memory usage is occupied memory after the last GC.

As shown in Figure 6, MHDeS can reduce memory usage
by 7.19% on average. For those benchmarks that have
negative reduction percentages, the memory occupied
by MHDeS (mainly MHObjects and chains) outweighs
the reduced equivalent method handles.

GC Pause Time.
According to Figure 7, the GC pause time is reduced

by 1.65% on average, which is only a minor improve-
ment. With MHDeS, there is an increase in short-lived
objects, i.e., temporary objects, and a decrease in the
number of MHGs. In this case, the incremental GC
overhead on temporary objects is largely counteracted
by the reduced GC overhead of the equivalent MHGs.
Besides, MHs are only a small portion of objects cre-
ated by the bytecode compiled from those tests. In the
figure, the list has the worst measurement own to an
stack overflow during runtime.

4.3 JIT compilation Impact
Figure 8 shows MHDeS’s impact on the number of

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

a
p
p
_
p
e
n
to

m
in

o
m

o
n
te

_
c
a
rlo

_
p
i

s
o
_
a
rra

y
g
c
_
s
trin

g
c
o
u
n
t_

m
u
ltith

re
a
d
e
d

a
p
p
_
ta

ra
i

c
o
u
n
t_

s
h
a
re

d
_
th

re
a
d

s
o
_
o
b
je

c
t

o
b
s
e
rv

n
s
ie

v
e
_
b
its

e
v
a
l

w
rite

_
la

rg
e

s
trin

g
_
c
o
n
c
a
t

m
e
rg

e
s
o
rt_

h
o
n
g
li

n
b
o
d
y

fib
e
r_

rin
g

g
c
_
a
rra

y
p
rin

tff
p
a
rtia

l_
s
u
m

s
fa

s
ta

w
o
rd

_
a
n
a
g
ra

m
s

lis
t

g
c
_
m

b
s
im

p
le

_
c
o
n
n
e
c
t

b
in

a
ry

_
tre

e
s

c
a
l

a
p
p
_
fa

c
to

ria
l

a
p
p
_
fib

s
o
_
lis

ts
_
s
m

a
ll

s
o
_
m

a
trix

s
o
_
s
ie

v
e

p
i

s
o
_
lis

ts
a
p
p
_
m

a
n
d
e
lb

ro
t

s
o
c
k
e
t_

tra
n
s
fe

r_
1
m

b
_
n
o
b
lo

c
k

p
rim

e
s

s
p
e
c
tra

l_
n
o
rm

fra
c
ta

l
s
im

p
le

_
s
e
rv

e
r

s
o
c
k
e
t_

tra
n
s
fe

r_
1
m

b

m
b
a
ri_

b
o
g
u
s
1

N
u

m
b

e
r

o
f

J
IT

s

MHDes
Orig

Figure 8: Number of MH JITs, Filtering Off

Method Handle (MH) JIT compilations. According to
figure, the number of MH JIT compilations is stable
regardless of the presence MHDeS. For test so matrix,
the number of JIT compilations is reduced from 75 to
55, which is the maximal change of JIT compilation in
our experiment. For other tests, there is trivial change
in the number of JITs.

MHDeS also helps move MH JIT compilation earlier.
First, the JIT compilation is conducted asynchronously.
Second, Equation 6 can be simplified to

CPU time ≈
n1∑
i=1

T inti +

n2∑
i=1

T exei (8)

as the percentage of accumulated paused GC time to
the total number of CPU time is trivial (the mean is less
than 0.8%) when the filtering is off. Since the bytecode
method for JIT is nearly fixed, the only explanation for
the reduction of CPU time (4.67%) is earlier JIT compi-
lation. Otherwise, there would be reduced

∑n2

i=1 T exei,
but an increase in

∑n1

i=1 T inti+
∑n2

i=1 T exei, which re-
sults in a contradiction.

4.4 MHG Reduction Efficiency and MHDeS
Expense

MHG Reduction Productivity (MRP) is a ratio of the
number of times (n0) that an MHG index key is detected
to be equivalent to the total number of MHG index keys
(n) that MHDeS receives for equivalence comparison.
This measure indicates MHDeS’s productivity, and the
higher MRP is, the more productive MHDeS is.

MRP =
n0

n
∗ 100% (9)

The MHDeS expense, which is evaluated as one equiv-
alence detection for an MHG index key, is shown in Ta-
ble 2. Compared to the whole program runtime, which
normally takes more than 10s, the data in the table
shows that the deduplication cost is trivial, as the mean

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

a
p
p
_
p
e
n
to

m
in

o
m

o
n
te

_
c
a
rlo

_
p
i

s
o
_
a
rra

y
g
c
_
s
trin

g
c
o
u
n
t_

m
u
ltith

re
a
d
e
d

a
p
p
_
ta

ra
i

c
o
u
n
t_

s
h
a
re

d
_
th

re
a
d

s
o
_
o
b
je

c
t

o
b
s
e
rv

n
s
ie

v
e
_
b
its

e
v
a
l

w
rite

_
la

rg
e

s
trin

g
_
c
o
n
c
a
t

m
e
rg

e
s
o
rt_

h
o
n
g
li

n
b
o
d
y

fib
e
r_

rin
g

g
c
_
a
rra

y
p
rin

tff
p
a
rtia

l_
s
u
m

s
fa

s
ta

w
o
rd

_
a
n
a
g
ra

m
s

lis
t

g
c
_
m

b
s
im

p
le

_
c
o
n
n
e
c
t

b
in

a
ry

_
tre

e
s

c
a
l

a
p
p
_
fa

c
to

ria
l

a
p
p
_
fib

s
o
_
lis

ts
_
s
m

a
ll

s
o
_
m

a
trix

s
o
_
s
ie

v
e

p
i

s
o
_
lis

ts
a
p
p
_
m

a
n
d
e
lb

ro
t

s
o
c
k
e
t_

tra
n
s
fe

r_
1
m

b
_
n
o
b
lo

c
k

p
rim

e
s

s
p
e
c
tra

l_
n
o
rm

fra
c
ta

l
s
im

p
le

_
s
e
rv

e
r

s
o
c
k
e
t_

tra
n
s
fe

r_
1
m

b

m
b
a
ri_

b
o
g
u
s
1

M
R

P
 (

%
)

Figure 9: MHG Reduction Productivity, Filtering Off,
Mean: 32%

maximal time expense for individual tests is about 10ms
(after excluding the dirty data for list, the maximal ex-
pense is 167ms for mbari bougs1, the cpu time of which
is about 26s). Besides, the mean deduplication expense
is less than 1ms because the expenses for the majority
of deduplication are nearly 0 as the tested and mh in
Procedure 1 refer to the same MH in the MH pool.

Mean(ms) Max(ms) Mean(ms) Max(ms)
app pentomino 0.163418 10 monte carlo pi 0.415842 11
so array 0.206452 10 gc string 0.375 15
count multithreaded 0.171504 11 app tarai 0.241667 10
count shared thread 0.180247 15 so object 0.179426 9
observ 0.191558 11 nsieve bits 0.180233 8
eval 0.468085 9 write large 0.404762 7
string concat 0.220339 8 mergesort hongli 0.222973 9
nbody 0.179562 9 fiber ring 0.268698 9
gc array 0.2 9 printff 0.337539 8
partial sums 0.281437 10 fasta 0.22314 9
word anagrams 0.197044 9 list 0.945606 296
gc mb 0.285714 8 simple connect 0.223214 12
binary trees 0.297872 10 cal 0.181435 8
app factorial 0.209302 6 app fib 0.211009 8
so lists small 0.190311 11 so matrix 0.378261 9
so sieve 0.272727 8 pi 0.178571 9
so lists 0.273356 7 app mandelbrot 0.376 10
primes 0.252137 10 socket transfer 1mb noblock 0.170673 1
spectral norm 0.194774 9 fractal 0.231884 10
simple server 0.201681 9 socket transfer 1mb 0.204334 1
mbari bogus1 0.0388703 167

Table 2: MHDeS Expense

5. RELATED WORK

5.1 Method Handle and invokedynamic instruc-
tion

Our work is inspired by the work of Xu et al. on
method handle data mining [24], which provided some
initial ideas about equivalent method handles in method
handle instance patterns. Compared to that work, our
work is the first attempt to optimize method handle
graphs on the JVM for dynamic JVM language imple-
mentations.

The most relevant work with method handles is about
the invokedynamic instruction and the projects that
adopt it. At the beginning of JSR 292, Rose from Or-
acle outlined all aspects of invokedynamic instruction
and possible optimization technologies [21]. Though

the work described in the paper is now obsolete, the
concept is still valid. After Rose, many JSR292 imple-
mentations have been proposed. Thalinger and Rose
detailed the new instruction implementation that was
released with OpenJDK 7 [23]; Heidinga from the J9
team demonstrated IBM’s implementation of invokedy-
namic and method handle pipeline design [6, 9]; Gilles
Roussel et al., presented a JSR292 implementation in
Dalvik, a register-based virtual machine for the Android
OS [22], which is much different from the implementa-
tion in HotSpot and J9 as Dalvik is a resource con-
strained VM.

The new instruction has been adopted in many projects.
Bodden extends Soot, a framework for static analysis
and transformation of Java programs, to support the
processing and generating of the invokedynamic instruc-
tion [13]. Similarly, Ponge et al. present the design of
Golo, a dynamic programming language for rapid pro-
totyping and polyglot application embedding, and ex-
plain how the invokedynamic instruction is used in this
project [19]. In addition to these research projects, most
well-known dynamically typed language interpreters e.g.,
JRuby (A Java implementation of the Ruby program-
ming language) [1, 2], JPython, and Nashorn (A JavaScript
engine based on Da Vinci Machine and released with
Java8) [10], are all pioneers of this instruction.

5.2 Graph Deduplication
Based on graph isomorphism, graph deduplication is

a technology to identify and eliminate equivalent graphs
at runtime, which is similar to the entity resolution
problem in the survey [16]. Existing work on graph
identification are rule-based [15], learning-based [20] method
and so on. The early work using graph keys to identify
graphs is in the work by Pernelle et al. [18], which spec-
ifies keys for Resource Description Framework (RDF)
data by a combination of objects’ and data properties
defined over an OWL ontology. Based on graph pat-
terns, Fan et al. [14] introduces a recursive graph key
generation. We apply and simplify Fan’s work by taking
advantage of MH domain information.

6. FUTURE WORK
Our next work for MHDeS is adaptive filtering. The

overhead of the equivalence detection for different MH
transformations varies. In order to maximize the po-
tential benefits and reduce the effort of deduplication,
the transformation for filtering should be carefully cho-
sen, and be adaptive to all of kinds of JVM languages,
instead of a single JRuby interpreter. Our direct plan
is to introduce a profiling module, which evaluates the
deduplication cost and potential improvement for each
transformation. After training, this module is later used
to guide MHDeS what kinds of MHs are most suitable
for filtering.

7. CONCLUSION

This paper provides a method handle graph equiva-
lence model and a system, called MHDeS, to eliminate
equivalent MHGs at program runtime. MHDeS indexes
all unique MHs in the MH pool by their transformation
indexes, and detects the uniqueness of an MH about to
be created at runtime. During detection and elimina-
tion, MHDeS a) creates an MHG index key to represent
the MH about to be created during comparison; b) only
compares MHG index keys to the MHs that have the
same transformation for the purpose of detection over-
head reduction; and c) uses fast-path comparison, which
detects non-equivalent MHs as early as possible. Our
experimental results show that 1) MHDeS with filtering
off can speed up dynamic JVM languages by 4.67% and
reduces memory usage by 7.19% on average; 2) there is
a space to maximize performance speedup by tuning the
choice of filtered transformations; 3) MHDeS can have
the MH JIT compilation performed earlier; and 4) as
much as 32% MHG index keys are detected non-unique
and eliminated with MHDeS, and the deduplication ex-
pense is trivial when compared to the whole life of the
test.

Acknowledgment
This work is supported by the Atlhantic Canada Op-
portunities Agency (ACOA) through the Atlantic In-
novation Fund (AIF) program. Furthermore, we would
also like to thank the New Brunswick Innovation Fund
for contributing to this project. Finally, we would like
to thank the Centre for Advanced Studies - Atlantic for
access to the resources for conducting our research.

8. REFERENCES
[1] Charles Nutter. A First Taste of InvokeDynamic.

http://blog.headius.com/2008/09/
first-taste-of-invokedynamic.html.

[2] Charles Nutter. Invokedynamic in 45 minutes.
http://www.jfokus.se/jfokus13/preso/jf13
InvokeDynamic.pdf.

[3] Computer Programming Benchmark Game.
http://benchmarksgame.alioth.debian.org/.

[4] Da Vinci Machine Project.
http://openjdk.java.net/projects/mlvm/.

[5] Java technology, IBM style: Garbage collection
policies, Part 1. http://www.ibm.com/
developerworks/library/j-ibmjava2/.

[6] Method Handle-An IBM implementation.
http://wiki.jvmlangsummit.com/images/a/ad/J9
MethodHandle Impl.pdf.

[7] Method Handle (Java Platform SE 7).
https://docs.oracle.com/javase/7/docs/api/java/
lang/invoke/MethodHandle.html.

[8] Method Handles (Java Platform SE 7).
https://docs.oracle.com/javase/7/docs/api/java/
lang/invoke/MethodHandles.html.

[9] MethodHandle Compilation Pipeline.
https://www.jfokus.se/jfokus15/preso/J9%

20MethodHandle%20Compilation%20Pipeline.
pdf.

[10] OpenJDK Nashorn Project.
http://openjdk.java.net/projects/nashorn/.

[11] Alpern, B., Attanasio, C. R., Barton,
J. J., Burke, M. G., Cheng, P., Choi, J.-D.,
Cocchi, A., Fink, S. J., Grove, D., Hind,
M., Hummel, S. F., Lieber, D., Litvinov, V.,
Mergen, M. F., Ngo, T., Russell, J. R.,
Sarkar, V., Serrano, M. J., Shepherd,
J. C., Smith, S. E., Sreedhar, V. C.,
Srinivasan, H., and Whaley, J. The
JalapeñO Virtual Machine. IBM Syst. J. 39, 1
(Jan. 2000), 211–238.

[12] Arnold, M., Fink, S., Grove, D., Hind, M.,
and Sweeney, P. F. Adaptive Optimization in
the Jalapeno JVM. In Proceedings of the 15th
ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and
Applications (New York, NY, USA, 2000),
OOPSLA ’00, ACM, pp. 47–65.

[13] Bodden, E. InvokeDynamic Support in Soot. In
Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program
Analysis (New York, NY, USA, 2012), SOAP ’12,
ACM, pp. 51–55.

[14] Fan, W., Fan, Z., Tian, C., and Dong, X. L.
Keys for graphs. Proc. VLDB Endow. 8, 12 (Aug.
2015), 1590–1601.

[15] Fan, W., Gao, H., Jia, X., Li, J., and Ma, S.
Dynamic constraints for record matching. The
VLDB Journal 20, 4 (Aug. 2011), 495–520.

[16] Getoor, L., and Machanavajjhala, A.
Entity resolution: Theory, practice & open
challenges. In International Conference on Very
Large Data Bases (2012).

[17] Grcevski, N., Kielstra, A., Stoodley, K.,
Stoodley, M., and Sundaresan, V. JavaTM
Just-in-time Compiler and Virtual Machine
Improvements for Server and Middleware
Applications. In Proceedings of the 3rd Conference
on Virtual Machine Research And Technology
Symposium - Volume 3 (Berkeley, CA, USA,
2004), VM’04, USENIX Association, pp. 12–12.

[18] Pernelle, N., SaÃŕs, F., and Symeonidou,
D. An automatic key discovery approach for data
linking. Web Semantics: Science, Services and
Agents on the World Wide Web 23 (2013), 16 –
30. Data Linking.

[19] Ponge, J., Le Mouël, F., and Stouls, N.
Golo, a Dynamic, Light and Efficient Language
for Post-invokedynamic JVM. In Proceedings of
the 2013 International Conference on Principles
and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and
Tools (New York, NY, USA, 2013), PPPJ ’13,
ACM, pp. 153–158.

[20] Rastogi, V., Dalvi, N., and Garofalakis,
M. Large-scale collective entity matching. Proc.
VLDB Endow. 4, 4 (Jan. 2011), 208–218.

[21] Rose, J. R. Bytecodes Meet Combinators:
Invokedynamic on the JVM. In Proceedings of the
Third Workshop on Virtual Machines and
Intermediate Languages (New York, NY, USA,
2009), VMIL ’09, ACM, pp. 2:1–2:11.

[22] Roussel, G., Forax, R., and Pilliet, J.
Android 292: Implementing Invokedynamic in
Android. In Proceedings of the 12th International
Workshop on Java Technologies for Real-time and
Embedded Systems (New York, NY, USA, 2014),
JTRES ’14, ACM, pp. 76:76–76:86.

[23] Thalinger, C., and Rose, J. Optimizing
Invokedynamic. In Proceedings of the 8th
International Conference on the Principles and
Practice of Programming in Java (New York, NY,
USA, 2010), PPPJ ’10, ACM, pp. 1–9.

[24] Xu, S., Bremner, D., and Heidinga, D.
Mining Method Handle Graphs for Efficient
Dynamic JVM Languages. In Proceedings of the
Principles and Practices of Programming on The
Java Platform (New York, NY, USA, 2015),
PPPJ ’15, ACM, pp. 159–169.

