
Fuse Method Handles for Dynamic JVM Languages
Shijie Xu

IBM Centre of Advanced Studies
University of New Brunswick

Fredericton, New Brunswick, Canada
shijie.xu@unb.ca

David Bremner
IBM Centre of Advanced Studies

University of New Brunswick
Fredericton, New Brunswick, Canada

bremner@unb.ca

Daniel Heidinga
IBM Ottawa Lab

Ottawa, ON, Canada
Daniel_Heidinga@ca.ibm.com

Abstract
A Method Handle (MH) in JSR 292 (Supporting Dynamically
Typed Languages on the JVM) is a typed, directly executable
reference to an underlying method, constructor, or field,
with optional method type transformations. Multiple con-
nected MHs make up a Method Handle Graph (MHG), which
transfers an invocation at a dynamic call site to real method
implementations at runtime. Despite benefits that MHGs
have for dynamic JVM language implementations, MHGs
challenge existing JVM optimization because a) larger MHGs
at call sites incur higher graph traversal costs at runtime;
and b) JIT expenses, including profiling and compilation of
individual MHs, increase along with the number of MHs.

This paper proposes dynamic graph fusion to compile an
MHG into another equivalent but simpler MHG (e.g., fewer
MHs and edges), as well as related optimization opportunities
(e.g., selection policy and inline caching). Graph fusion dy-
namically fuses bytecodes of internal MHs on hot paths, and
then substitutes these internal MHs with the instance of the
newly generated bytecodes at program runtime. The imple-
mentation consists of a template system and GraphJIT. The
former emits source bytecodes for individual MHs, while the
latter is a JIT compiler that fuses source bytecodes from tem-
plates on the bytecode level (i.e., both source code and target
code are bytecodes). With the JRuby Micro-Indy benchmark
from Computer Language Benchmark Game and JavaScript
Octane benchmark on Nashorn, our results show that (a)
the technique can reduce execution time of Micro-Indy and
Octane benchmarks by 6.28% and 7.73% on average; b) it
can speed up a typical MHG’s execution by 31.53% using
Ahead-Of-Time (AOT) compilation; and (c) the technique
reduces the number of MH JIT compilations by 52.1%.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VMIL’17, October 24, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5519-3/17/10. . . $15.00
https://doi.org/10.1145/3141871.3141874

CCS Concepts • Software and its engineering→ Inter-
preters; Interpreters; Just-in-time compilers;

Keywords invokedynamic, method handle, bytecode gen-
eration, just-in-time, object fusion

ACM Reference Format:
Shijie Xu, David Bremner, and Daniel Heidinga. 2017. Fuse Method
Handles for Dynamic JVM Languages. In Proceedings of ACM SIG-
PLAN International Workshop on Virtual Machines and Interme-
diate Languages (VMIL’17). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3141871.3141874

1 Introduction
A method handle (MH) is a typed, directly executable refer-
ence to an underlying method, constructor, field, or similar
low-level operation, with optional transformations of argu-
ments or return values [12]. These transformations include
such patterns as method argument insertion, removal, and
substitution. Method handles, together with the Java Virtual
Machine (JVM) instruction, invokedynamic, were first pro-
posed in the Java Specification Request (JSR) 292 to resolve
“pain points” when implementing dynamic JVM languages
(e.g., JavaScript, Ruby and Python) [3, 14, 18].

As a method referred by an MH can have references to
other MHs, multiple connected MHs make up a Method Han-
dle Graph (MHG) [24]. An MHG has only one root, and it
can be executed by invoking the root’s invokeExact method,
which in turn triggers the execution traversal of the whole
or partial graph. With the invokedynamic instruction, a dy-
namic method call can be resolved to real method imple-
mentations by executing the linked MHG at the call site. In
Figure 1, the root holds two child MH 2 and MH 3, and its
execution can resolve a dynamic invocation to real method
implementations that are referenced by leaf MHs.

1.1 Motivation
The disadvantage of an MHG is its complex structure for
traversal, especially when the graph (or equivalent graphs)
is large and repeatedly seen at multiple call sites. To resolve
a dynamic method, a number of indirections from the root
have to be done. In Figure 1, the JVM has to execute at least
four MHs (i.e., 1, 3, 4, and 6) from the MH 1 to the leaf MH 7.
Considering the prevalence of dynamic method invocations,
these four indirections from root to leaves would be repeated
many times at runtime, and it is worthwhile to seek a more

https://doi.org/10.1145/3141871.3141874
https://doi.org/10.1145/3141871.3141874

VMIL’17, October 24, 2017, Vancouver, Canada Shijie Xu, David Bremner, and Daniel Heidinga

1

2 3

4 5

6

7 8 9

Figure 1. Method Handle Sample

efficient method to reach leaf MHs, instead of traversing on
the original path strictly.

Large MHGs are also inefficient for Just-In-Time (JIT)
compilations on the JVM. JIT compilation is a procedure
that translates a frequently executed bytecode method (or
trace) into native machine code. In the J9 JVM (i.e., IBM’s
JVM implementation), the MH JIT compilation, conducted
by Testarossa JIT (TRJIT) compiler, uses multiple phases,
two of which are a translation of individual MHs with little
optimization (i.e., warm JIT) and a translation of an MHG
with aggressive optimization (i.e., hot JIT), when these MHs
are hot enough [5, 11]. Thus, both profiling tasks and warm
JITs are conducted on individual MHs, and the cost is ap-
proximately proportional to the number of MHs in a graph.
For example, there are 9 profiling targets and 9 warm JIT
compilation startups for the MHG in Figure 1, if they are
all hot enough. Consequently, the accumulated expenses of
profiling and compilation startups on individual MHs are
not trivial at program runtime, when MHGs become large.
Further more, the large number of MH compilation tasks
that are submitted to JIT system would increase competition
among compilation tasks (e.g., MH tasks and other non-MH
tasks) for JIT threads.

Figure 2. a) Merge 1 and 3; b) Merge 3, 4, and 6

Addressing MHG traversal and its JIT compilation over-
head, this paper proposes a dynamic graph fusion to compile
an MHG into another equivalent but simpler MHG, and op-
timization opportunities (e.g., graph node selection policy
and inline caching). The graph fusion dynamically generates
new MH transformations by fusing hot internal MHG nodes’
bytecodes; it creates MH instances of the new transforma-
tions; it sets up a new MHG with MHs from the source MHG
and these newly created MHs; and it substitutes the new
MHG for the source MHG at the dynamic call site for execu-
tion. For example, two MHGs in Figure 2 are the compilation

output for the MHG in Figure 1. In both MHGs, MHs, i.e.,
MH(1,3), MH(3,4,6) and MH(1’), are newly generated, and
the distances from root to MH 7 are reduced from 4 to 3, and
from 4 to 2, respectively.

The provided graph fusion solution works on the bytecode
level, and is implemented by two components: an MH tem-
plate system and GraphJIT. In the template system, templates
of individual MH transformations produce source bytecodes.
GraphJIT is a JIT compiler for a Frequently Traversed but Sta-
ble Directed Acyclic (FTSDA) graph simplification. Within J9
JVM, GraphJIT fuses source bytecodes of MHs on hot paths,
and moves leaf MHs close to the graph root by dynamically
generating bytecodes. By running JRuby Micro-Indy bench-
mark from Computer Language Benchmark Game [2] and
JavaScript Octane [16] benchmark on Nashorn [15], our eval-
uation shows that the technique a) can reduce execution time
of Micro-Indy and Octane benchmark by 6.28% and 7.73%
on average, respectively; b) can speed up a typical MHG’s
traversal from Micro-Indy benchmark by 31.53% using AOT
compilation; c) as much as 53.84% MHs have been fused by
GraphJIT; d) the technique reduces the number of MH JIT
(warm JIT) compilations by 52.1%.

1.2 Contributions
Our contributions are
• bytecode level graph fusion for reduction of MHs and

potential JIT compilation efforts.
• the integration of GraphJIT with J9 JVM for the method

handle graph fusion, and the identification of multiple
optimization opportunities (e.g., sharing of the gener-
ated bytecodes, and graph node selection policies) to
balance the compilation cost and potential benefits.
• an extensive evaluation with a quantitative analysis

of how graph fusion impacts performance and MH
JIT compilation. We show that graph fusion can speed
up method handle graph execution, and reduces the
number of MH warm JIT compilations in J9 JVM.

The rest of this paper is organized as follows. Section 2
provides general background for the invokedynamic instruc-
tion and method handles. Section 3 and Section 4 overview
the system structure, and describe the template system. Sec-
tion 5 and Section 6 provide the GraphJIT integration with
method handles in J9 JVM and runtime optimizations (e.g.,
hot MH selection and inline caching for mutable MHs) during
compilation. Section 7 shows our evaluation results. Finally
the related work, future work, and conclusions are given in
Section 8, Section 9 and Section 10, respectively.

2 Background
2.1 Invokedynamic Instruction
Many “pain points” (e.g., failed inlining and polluted profiles)
have been reported when implementing dynamic languages
on the JVM [18]. Different from statically typed languages,

Method Handle Graph Fusion VMIL’17, October 24, 2017, Vancouver, Canada

d0

gwt

g
f

t

next

filter

guard

target

String.isEmpty

Other.addGoogle

Some.addYahoo

f

filterReturn

GWT

fallback

Figure 3. Sample MHG

variables in dynamically typed languages do not reveal much
type information at compilation time. As a result, for dy-
namic method invocations, the JVM has to rely on many
indirect ways to calculate types at runtime, which increase
runtime overhead.

Therefore, JSR292 introduces a bytecode instruction in-
vokedynamic for dynamic method invocations when imple-
menting dynamic JVM languages. This instruction allows
language implementers to define the way (i.e., MHG) to re-
solve a dynamic method invocation. For a dynamic method
invocation, dynamic JVM language interpreters generate an
invokedynamic instruction, and associate it with a bootstrap
method. When the JVM first sees an invokedynamic instruc-
tion, it calls the bootstrap method, which creates and links a
method handle (or MHG) to the call site. Later, the dynamic
invocation will be resolved to real method implementations
via MHG execution traversal.

2.2 Invokedynamic and Method Handle Graphs
An MHG consists of MHs, and each MH represents a method
type transformation. JSR 292 provides predefined transfor-
mations, such as dropArguments, filterReturn, guardWithTest
(GWT), and insertArguments [18]. Each transformation is
represented by a Java class in the J9 JVM. Via MH combi-
nation, complex MHGs can be built to resolve a dynamic
method invocation. For example, the bootstrap method in
Listing 1 creates a call site and connects it with the MHG in
Figure 3. The newly created MHG, starting at d0, is capable
of resolving the invocation at the call site to the real method
implementations (i.e., String.isEmpty(), Some.addYahoo() and
Other.addGoogle()) via the GuardWithTest transformation
and filterReturn transformation.

An MH can be executed by invoking its invokeExact
method; it has an attribute: method type, indicating method
arguments and return type that the MH accepts; and it is
associated with a method type transformation.

3 System Structure
Within the J9 JVM, MH graph fusion consists of a template
system and GraphJIT, as shown in Figure 4. The template
system emits source bytecodes (i.e., bytecode instructions of
a class) for selected MHs in the MHG produced by dynamic

1 C a l l S i t e boo t s t r apMethod (. . .) {
2 C a l l S i t e c s = new M u t a b l e C a l l S i t e () ;
3 MethodHandle g = lookup () . f i n d V i r t u a l (S t r i n g

. c l a s s , " i sEmpty " , methodType (boo lean .
c l a s s)) ;

4 MethodHandle t = lookup () . f i n d S t a t i c (Other ,
" addGoogle " , methodType (S t r i n g . c l a s s ,
S t r i n g . c l a s s)) ; / / Append g o o g l e .

5 MethodHandle f = . . . / / f r e f e r s t o Some .
addYahoo

6 MethodHandle gwt = guardWithTes t (g , t , f) ;
7 MethodHandle d0 = f i l t e r R e t u r n (gwt , f) ;
8 / / a s s e r t E q u a l ((s t r i n g) d0 . i n v o k e E x a c t (a r g s) ,

(s t r i n g) f . i n v o k e E x a c t ((S t r i n g) gwt .
i n v o k e E x a c t ()))

9 c s . s e t T a r g e t (d0) ;
10 r e t u r n c s ; }

Listing 1. Sample Bootstrap Method for MHG creation

Figure 4. High Level MHG Fusion: Template System,
GraphJIT

JVM language interpreters (e.g., JRuby, Nashorn); GraphJIT
processes these source bytecodes and fuses them together
as new classes; a new MHG is built from these new classes,
and replaces the source MHG for execution.

The procedure is shown in Figure 5. First, each internal
MH in the MHG on the left is translated into source byte-
codes via the template system. Then these bytecodes (i.e.,
C_root, C_4 and C_5) are fused together as a transformation
method for a newly generated MH class (i.e., DYNGuard-
WithTestHandle) by GraphJIT. An instance of DYNGuard-
WithTestHandle replaces the origin G_root at dynamic call
sites after it is set up with leaves in the source graph. The
method in the new class is JITted into native code by TR JIT
compiler in J9 JVM, if this instance is frequently interpreted.

4 Method Handle Template System
An MH’s source bytecodes represent the transformation that
a single MH does, and these bytecodes form a class node,
which is made up of a class declaration instruction, field
instructions, and method instructions. A class node can be

VMIL’17, October 24, 2017, Vancouver, Canada Shijie Xu, David Bremner, and Daniel Heidinga

Figure 5. Workflow for Template System, GraphJIT and JIT

uniquely mapped to a Java class after its bytecodes are loaded
by a class loader.

An MH’s template is a set of Java methods that emit source
bytecodes. For an MH, the execution of the corresponding
template will produce source bytecodes, the execution of
which is equivalent to that of the original MH (i.e., calling
that MH’s invokeExact method). The template system hides
the different JVM’s implementations for MHs.

4.1 Template Implementation
As different MH transformations vary, a template is only
associated with a single method handle transformation (i.e.,
an MH class). For example, an MH of guardWithTest trans-
formation transfers the invocation to its child trueTarget by
a testing child guard. Thus, its template’s execution will gen-
erate source bytecodes, the decompilation of which is shown
in Listing 2.
1 T i n v o k e E x a c t (a r g s) {
2 i f (guard . i n v o k e E x a c t (a r g s)) {
3 r e t u r n (T) t r u e T a r g e t . i n v o k e E x a c t (a r g s) ;
4 } e l s e {
5 r e t u r n (T) f a l l b a c k . i n v o k e E x a c t (a r g s) ;
6 }
7 }

Listing 2. Decompiled result for guardWithTest template

A template’s execution requires a method handle’s method
type. It accepts a method type and other optional data that
the MH has as parameters. The method type determines the
number of variables should be loaded to the operand stack,
and which instructions should be used for individual vari-
ables in the source bytecodes. For a guardWithTest MH with
a method type (Object, int)Object, two instructions: ALOAD
and ILOAD, are emitted to load first two arguments into
operand stack.

4.2 Source Bytecodes Sharing
To avoid unncessary template execution, source bytecodes
generated by a template can be shared, if corresponding
MHs have the same method type. As shown in Figure 6,
both MH 1 and MH 2 have the same transformation and
method type. Therefore, each MH transformation maintains
an internal cache, which remembers the source bytecodes by

 A MH class

(A transformation)

A Template
type1

type2

type3

SB for type1

SB for type2

SB for type3

MH instances

Output

1

2

3

4

Figure 6. Source Bytecodes (SB) and Method Types

the corresponding method type. The source bytecodes, once
they are generated, are inserted into the cache. Later, for an
MH transformation, the cached version of source bytecodes
is directly used, instead of regenerating everything from
scratch, if the method type is hit in the internal cache.

5 GraphJIT Compilation
GraphJIT is a JIT compiler that performs a graph fusion
by compiling source bytecodes of internal graph nodes on
hot paths. The compilation is on the bytecode level (i.e.,
both source and target are bytecodes). During compilation,
the source bytecodes from MHs on hot paths are selected
and fused together as new bytecodes (i.e., one or more Java
classes); a new MHG from these new bytecodes is created
and set up with leaves or infusible nodes from the source
graph; and finally the new graph replaces the source graph
for execution.

Figure 7 illustrates how GraphJIT works for the graph in
Figure 1. First, source bytecodes of MH 4 and MH 6 are fused
for a single MH (4,6); then, source bytecodes of MH 3 and
MH (4,6) are fused as the MH (3,4,6); next, the bytecodes of
the root MH 1 are also fused with the MH (3,4,6), and a new
MH (1, 3, 4, 6) is created. Compared to the source graph G0 ,
the new graph has 4 less MHs, and the distance from root
MH to the leaves 7 and 8 is shortened by 3.

The main three steps to complete MHG fusion are field
context construction, dynamic bytecode generation, and new
graph activation. To connect these three steps, a queue is
built for each non-leaf fusible MH in the graph, and will be
filled up with bytecodes during bytecode generation step.
Different from the source bytecodes, which only represent
the transformation that a single MH has, bytecodes in an

Method Handle Graph Fusion VMIL’17, October 24, 2017, Vancouver, Canada

1

2 3

5

7 8

4,6

9

1

2
3,4,6

5

7 8
9

a) G1: Merge 4,6 b) G2: Merge 3 with (4,6) c) G3: Merge 1 with (3,4,6,9)

2 1,3,4,6

5

7 8
9

1

2 3

5

7 8

6

9

4

G0: original graph

Figure 7. Graph Compilation Illustration for Figure 1 (The merging of two MHs here is equivalent to fusion of their bytecodes,
instance creation of the fused bytecodes, and replacement of both MHs by the new instance)

Figure 8. Graph and FieldContexts (FCs)

MH’s queue represent transformations of the whole sub-
graph starting at that MH.

5.1 Field Context Construction
A per-MH FieldContext tracks both leaf and infusible internal
MHs that the MH can reach, as well as paths to these MHs.
During bytecode generation step, a FieldContext is mapped
to bytecode instructions that define a new MH class. These
newly generated instructions are pushed to the MH’s queue.

The main component in a FieldContext is a map that con-
sists of entries

f ieldName => { f ieldNode,child }

where the fieldName is a string field name, and the fieldNode
(i.e., a combination of field modifier, field type, field name in
a class) is an instruction that creates a field member for the
corresponding child. Here child is an infusible graph node
(e.g., a leaf or an infusible node), and is reachable from the
MH. The fieldName reflects the path from the MH to the
corresponding child, and the field name component in the
fieldNode will be consistent with it. For example, the root’s
FieldContext, FC_root in Figure 8, has an entry n1_n1 =>
{FN_n1_n1,o1}, indicating that the path from the root to o1
is n1→ n1 in the source graph.

The order to construct a FieldContext is from bottom to
top. To build an MH’s field context, GraphJIT checks to see
whether all its child FieldContexts have been set up. Other-
wise, it goes to create and set up the MH’s child FieldContexts.

Field contexts will be fused, if corresponding MHs (e.g.,
root and o4) are fusible. To set up an MH’s FieldContext,
GraphJIT copies entries from its child FieldContexts to its
map, with field name transformations. For an entry in a child
FieldContext, GraphJIT prefixes the field name component
with a path from the current MH to that child. Take the root
and o4 in Figure 8 for an example; the path between them
is n1. Thus, two entries in FC_o4 are prefixed with the path
n1_, before both are added to the FC_root’s map. The copied
entry n1_n1 for the MH o1 in FC_root indicates that JVM
can reach o1 from root via the path n1_n1. Meanwhile, the
corresponding field name component in the FN_n1_n1 is also
updated, so that it would be consistent with the new key
name fieldName in the map.

In case a child is not fusible (i.e., a leaf or an infusible
internal node), GraphJIT creates a new entry, in which the
field name is the same as the edge name, and fieldNode refers
to that child directly. For example, a new entry

n2 => {FieldNode_n2,o5}

is created and added as one entry for the FC_root, if o5 is not
fusible.

5.2 Dynamic Bytecode Generation
For an MH in the graph, GraphJIT converts its FieldContext
into bytecodes, and adds these bytecodes into the queue.
These new bytecodes consist of instructions to create a class
declaration, fields, and methods. Once completed, these byte-
codes form a new MH class, representing the whole sub-
graph’s transformation.

For the class declaration, the generated class is a subclass
of the MethodHandle class in J9, so that it can reuse the
existing method handle implementations in J9. For fields,
GraphJIT creates a field for each entry in the FieldCon-
text using fieldNode information. Take the entry n1_n1→
{FN_n1_n1, o1} in root’s field context for example; GraphJIT
creates a MethodHandle field, named n1_n1, with modifier
information in the FN_n1_n1.

VMIL’17, October 24, 2017, Vancouver, Canada Shijie Xu, David Bremner, and Daniel Heidinga

GraphJIT generates two methods, a thunk method and a
transformation method, for the new class. The thunk method
is a J9 specific method, which glues the TR JIT compiler
to the transformation method. Owing to the class layout
changes, GraphJIT generates the transformation method by
fusing the current MH’s source bytecodes and bytecodes
from current MH’s child queues. GraphJIT copies current
MH’s source instructions, after possibly performing one of
following operations:

method inlining for an invocation, if the invocation re-
ceiver is a fused child, the queue of which has been filled up
with bytecodes from its field context.

field operation instruction (e.g., getField) elimination,
if the field name to the target is not in the entries of current
MH’s field context. A field operation instruction loads an
object’s field into the operand stack. For example, the source
bytecodes for

this .n1.invokeExact ()
in root is shown in listing 3. GraphJIT will skip GETFIELD
instruction, because n1, which references child o4, in this
instruction fails to hit entries in root’s field context.
1 ALOAD 0
2 GETFIELD MethodHandle . n1 : LMethodHandle
3 INVOKEVIRTUAL MethodHandle . i n v o k e E x a c t () L O b j e c t

Listing 3. Field Operation Elimination

5.3 Activation of New Graphs
After dynamic bytecode generation, bytecodes in an MH’s
queue are class loaded to create a new Java class. The ac-
tivation is only for MHs that are either the root or MH’s
infusible children.

For the generated Java class, GraphJIT creates an instance
O, and sets its fields based on the corresponding FieldContext.
For the entry n1_n1→ {FN_n1_n1, o1} in root’s FieldContext,
GraphJIT setsO’s n1_n1 field to be o1. The new graph starting
O is activated, once it replaces the source MHG.

6 Runtime Optimization
6.1 MH Node Selection Policies
MH Entry Counter An MH has an Entry Counter (EC),
whose value increases by one, each time the MH is executed.
An MH will be classified as hot, if its EC is greater than
Threshold, as discussed below. Leaf MHs does not have an
EC, as they are infusible and represent empty transformation.

The default selection policy is based on an MH’s EC.
GraphJIT only selects MHs on hot paths, to avoid compila-
tion cost on cold MHs. When the JVM executes an MH, it
checks the MH’s EC, and fuses the MH with its child MHs,
if all ECs exceed Threshold. This policy is based on the as-
sumption that an MH path will continue to be hot, if it has
been hot for a long time.

Figure 9. Incremental Generation (Threshold: 30)

The Threshold is dynamically determined. GraphJIT re-
quires two parameters MAX_Threshold and t, which is in a
range of [0, 100]. The MAX_Threshold is often configured to
be the threshold that can trigger the first MH JIT compilation.
Threshold is calculated as the value, so that t% of existing
counters’ values are greater than it, when the first MH JIT
happens.

Maximal Bytecode Queue Size and Re-Generation
The generation is incremental, once Threshold is calculated.
For example, both MH 1 and MH 2 are first fused in Figure 9.a.
Later, the MH 3 might also be fused into the MH (1,2), when
JVM executes the MH (1,2), because the EC of MH 3 reaches
Threshold in Figure 9.b.

To determine whether to fuse MH 3 or not, GraphJIT
uses a parameter, named maximal bytecode queue size, to
control the size of queue bytecode. For MH (1,2), GraphJIT
calculates the number of its source bytecode instructions,
which is roughly the sum of queue bytecodes of MH 1, plus
the number of the source bytecodes instructions of MH 3.
If the sum is still less than the maximal bytecode queue
size, MH 3 will be fused into MH(1,2). Otherwise, the fusion
of MH 3 has to be delayed until one of its other parents
(e.g., MH 6) is executed and that parent’s EC also reaches
Threshold. The TR JIT compiler is sensitive to the complexity
(e.g., the combination of loops and if-conditions) of bytecode
blocks. By maximal bytecode queue size, GraphJIT controls
the complexity of bytecodes, as a larger bytecode block in
the queue is likely to indicate a complex graph (e.g., a sub-
graph’s complexity).

6.2 Mutable Nodes and Inline Caching
GraphJIT detects and handles mutable MHG nodes, the chil-
dren of which are mutable. An MH is classified as potentially
mutable, if its source bytecodes have a PUTFIELD instruction
that resets its child. In other words, a mutable MH’s child can
be dynamically reset at runtime, and this results unstable
graph structure. For example, the PUTFIELD in line 4 of List-
ing 4 sets field this.n1 to the variable 1. To handle a mutable
MH, Inline Caching (IC) is used to remember the receiver
during the fusion. GraphJIT creates a cached field member
that statically references the current receiver when fusion
is ongoing, and generates the byetcodes that check whether
the real receiver is equivalent to the cached one at runtime.

Method Handle Graph Fusion VMIL’17, October 24, 2017, Vancouver, Canada

1 r o o t ' s ␣ s o u r c e ␣ b y t e c o d e : {
2 ALOAD␣ 0
3 ALOAD␣ 1
4 PUTFIELD ␣ MethodHandle . n1 : LMethodHandle ␣ ␣ / / t h i s .

n1 ␣ = ␣ v a r i a b l e ␣ 1
5
6 ALOAD␣ 0
7 GETFIELD ␣ MethodHandle . n1 : LMethodHandle
8 INVOKEVIRTUAL ␣ MethodHandle . i n v o k e E x a c t () L O b j e c t
9 }

10 Decompiled ␣ code :
11 {
12 ␣ ␣ f i n a l ␣ s t a t i c ␣ MethodHandle ␣ cached =Map . g e t (" key

") ;
13 ␣ ␣ p u b l i c ␣ vo id ␣ i n v o k e E x a c t () {
14 ␣ ␣ ␣ ␣ . . .
15 ␣ ␣ ␣ ␣ i f (n1== cached) {
16 ␣ ␣ ␣ ␣ ␣ ␣ / / i n l i n e ␣ cached . i n v o k e E x a c t () ␣ i n ␣ t h i s ␣

branch
17 ␣ ␣ ␣ ␣ } e l s e {
18 ␣ ␣ ␣ ␣ ␣ ␣ n1 . i n v o k e E x a c t ()
19 ␣ ␣ ␣ ␣ } ␣ ␣ } ␣ }

Listing 4. Mutable MH cases

For example, the decompiled bytecodes for the invocation
instruction at line 8 of Listing 4 are shown from line 15 to
19. The variable cached at line 13 remembers the receiver
by a constant key, and it is initialized during class loading.
The remembered receiver normally has been intensively op-
timized before these bytecodes are generated. At runtime,
cached is compared with the real invocation receiver, and
will be used, iff the comparison succeeds.

7 Evaluation
7.1 Benchmarks
JRuby Micro-Indy Benchmark from CLBG JRuby is a
Java implementation of the Ruby programming language,
and JRuby is the first language that adopted invokedynamic
on Java 7. At runtime, the JRuby interpreter emits bytecodes
from Ruby source, and then executes these bytecodes on
the JVM. Both method handles and invokedynamic are only
related to dynamic method invocations.

The Micro-Indy benchmark has 32 Ruby tests, and each
test has 5 to 150 lines. Most tests have one or two intensive
dynamic method invocations via for-loops or recursive calls,
and the maximal MHG size is less than 200. During runtime,
both verbose GC and JIT logs are collected for performance
analysis.

JavaScript Octane Benchmark for Nashorn Nashorn
is a JavaScript engine for the JVM. The Octane benchmark
measures a JavaScript engine’s performance by running a
suite of tests, which represent certain use cases in JavaScript
applications. In the benchmark, there are 16 JavaScript tests.

g1024508209,GuardWithTestHandle

g1763283466,MutableCallSiteDynamicInvokerHandle

guard

g749309705,GuardWithTestHandle

trueTarget

g72435212,BruteArgumentMoverHandle

falseTarget

g425249639

site

g1141147161,BruteArgumentMoverHandle

guard trueTarget falseTarget

g1837670448,AsTypeHandle

next g588251664,Insert1Handle

equivalent

g1900168062,DirectHandle

next next

next

g1943787245,AsTypeHandle

next next next g1506334146,Insert1Handle

equivalent equivalent equivalent

g1577733039,AsTypeHandle

next next next next next next

g881585249,DirectHandle

next next nextnext next next

next next next

Figure 10. Typical MHG a for AOT

As all these tests are evaluated in a single JavaScript applica-
tion in Octane, we only collect execution time measurement
for each test. Similar to the JRuby Micro-Indy benchmark,
method handle graphs are only created and traversed for the
dynamic method invocations.

Typical Method Handle Graph Three MHGs: the typi-
cal MHG a, shown in Figure 10, the MHG compiled from a by
GraphJIT with inline caching optimization with_IC, and the
MHG compiled from a by GraphJIT without IC optimization
(NO_IC), are executed 20*250 times. The MHG a is a typical
MHG structure, when executing the Micro-Indy benchmark
test cal, which has worst performance with GraphJIT.

7.2 Environment Setup
Our experiment is done on a Intel Xeon machine that has
4 × Intel Xeon E7520 1.8 GHz processors. The machine has
16 cores and 64GB memory. Two dynamic JVM language
interpreters, i.e., JRuby [13] (version 9.0.4.0) and Nashorn
[15], are used on the IBM J9 JVM. For the evaluation result,
GraphJIT is disabled for data with “Orig” (or “Original”),
while it is enabled for the measured data with “GraphJIT”.
For GraphJIT, the MAX_Threshold is configured to be the
JIT’s threshold, while t is set to be 90.

7.3 Execution Time and Execution Score
For the Micro-Indy benchmark, ExecTime is measured as the
elapsed time to complete a test. The comparison measure is

speedup =
ExecTimeor iд − ExecTimeGraph J IT

ExecTimeor iд
∗ 100% (1)

AOT of Typical MHG The purpose of building two MHGs
is to verify that the fused MHG outperforms the original
MHG on the traversal. According to Figure 11, MHG fusion
solution speeds MHG traversals. The traversal of the MHG
no_IC has best performance, and the mean speedup is 31.53%.
The performances between No_IC and Orig are close to each
other after 14*250 executions, because native code generated

VMIL’17, October 24, 2017, Vancouver, Canada Shijie Xu, David Bremner, and Daniel Heidinga

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16 18 20

E
x
e
c
T

im
e
 (

m
s
)

The number of Executions (X250)

Origin
no_IC

with_IC

Figure 11. AOT ExecTime (Mean Speedupno_ic : 31.53%)

m
e
rg
e
s
o
rt_

h
o
n
g
li

g
c
-s
trin

g
s
o
c
k
e
t_
tra

n
s
fe
r_
1
m
b

a
p
p
_
fa
c
to
ria

l
p
rin

tff
s
o
_
lis
ts

p
rim

e
s

c
o
u
n
t_
m
u
ltith

re
a
d
e
d

fa
s
ta

n
b
o
d
y

a
p
p
_
fib

s
o
c
k
e
t_
tra

n
s
fe
r_
1
m
b
_
n
o
b
lo
c
k

s
o
-o
b
je
c
t

g
c
_
m
b

n
s
ie
v
e
_
b
its

p
i

s
im

p
le
_
s
e
rv
e
r

g
c
_
a
rra

y
w
o
rd
_
a
n
a
g
ra
m
s

a
p
p
_
p
e
n
to
m
in
o

e
v
a
l

s
o
_
m
a
trix

s
im

p
le
_
c
o
n
n
e
c
t

p
a
rtia

l_
s
u
m
s

s
trin

g
_
c
o
n
c
a
t

s
o
_
a
rra

y
c
o
u
n
t_
s
h
a
re
d
_
th
re
a
d

fib
e
r_
rin

g
lis
t

m
o
n
te
_
c
a
rlo

_
p
i

o
b
s
e
rv

w
rite

_
la
rg
e

− 40

− 20

0

20

40

60

80

100

S
p
e
e
d
u
p
(%

)

42

8

15
8

8

80

26

2

9

26

3

20

10 9 11
8

1

1115

8 8
2

6

1011

8 8

0
7

2 0

2

Figure 12. Speedup for Micro-Indy Tests (Mean: 6.28%)

-5

 0

 5

 10

 15

 20

 25

 30

R
ic

h
a
rd

s

D
e
lta

B
lu

e

C
ry

p
to

R
a
y
T

ra
c
e

E
a
rle

y
B

o
y
e
r

R
e
g
E

x
p

S
p
la

y

S
p
la

y
L
a
te

n
c
y

N
a
v
ie

rS
to

k
e
s

P
d
fJ

S

M
a
n
d
re

e
l

M
a
n
d
re

e
lL

a
te

n
c
y

G
a
m

e
b
o
y

C
o
d
e
L
o
a
d

B
o
x
2
D

T
y
p
e
s
c
rip

t

S
p

e
e

d
u

p
(%

)

Figure 13. Speedup for Octane Tests (Mean: 7.73%)

from both MHGs are similar to each other. The performance
of with_IC is worst after 7*250 executions, because inlin-
ing cache is not effective for the completely static MHG a
here. For a static small graph, inline caching adds an extra
overhead, and may prevent TR JIT from doing other opti-
mizations, due to the number of checking and comparison
operation at runtime.

Runtime GraphJIT Evaluation In this evaluation, both
the JRuby Micro-Indy and the JavaScript Octane benchmark
are executed on J9 JVM with GraphJIT. Besides MHG and
invokedynamic, the generated bytecodes from scripts also
include other computing tasks. Therefore, the execution
time for a test is mixture of costs for MHG traversal, GC,
GraphJIT’s workload, and other computing tasks.

As shown in Figure 12 and Figure 13, both the JRuby
Micro-Indy and the JavaScript Octane benchmark see per-
formance speedup with MHG fusion solution. On the av-
erage, the speedups for Micro-Indy and Octane are 6.28%
and 7.73%, respectively. However, the speedup for individual
tests varies significantly, especially for Micro-Indy bench-
mark tests. For JRuby benchmark, some tests have a clear
performance improvement, but some others get worse. For
Octane benchmark, the result is more consistent among all
tests. The explanation is that some transformation patterns
(e.g., graph structures) are not suitable for fusion, while node
selection policy in GraphJIT only considers a node’s hotness
and corresponding method size. The selection of these sub-
MHGs might make the queue bytecodes too complex for the
JIT compiler.

7.4 Effectiveness for Micro-Indy
Percentage of Reduced MHs by GraphJIT For the Micro-
Indy benchmark, GraphJIT can effectively reduce the number
of graph internal MHs. GraphJIT logs MHs that it has seen
and processed. As shown in Figure 14, the number of internal
MHs is reduced by 53.84% on the average. This measurement
depends on the way that an MHG is built and how frequently
an MHG is visited. For GraphJIT, MHGs that have more in-
ternal nodes and frequent paths are more likely to be chosen
by GraphJIT for compilation.

TR JIT Compilation Impact MHGs compiled from
GraphJIT serve as input for TR in J9, and these simplified
MHGs will only be JITted if their entry counters exceed a
predefined threshold in J9.

Figure 15 shows percentages of reduced MH warm JIT
compilations and increased MH warm JIT compilation times.
In the figure, the number of warm JIT compilations decreases
by approximately 52.1%, which is close to the reduction of
MHs, indicating little overhead on the MH JIT profiling and
compilation tasks.

However, there is not much improvement on the MH
warm JIT compilation time. In Figure 15, only half of tests
have negative “percentage of increased MH JIT time”. For

Method Handle Graph Fusion VMIL’17, October 24, 2017, Vancouver, Canada

 30

 35

 40

 45

 50

 55

 60

 65

 70

-5 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

T
h

e
 p

e
rc

e
n

ta
g

e
 o

f
R

e
d

u
c
e

d
 N

o
d

e
s
 (

%
)

Figure 14. Percentage of Reduced MHs (Mean: 53.84%). x-
axis is test-id, the order of which is consistent with x-axis in
Figure 12.

-40

-20

 0

 20

 40

 60

 80

 100

-5 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

-100

 0

 100

 200

 300

 400

 500

P
e

rc
e

n
ta

g
e

 o
f

R
e

d
u

c
e

d
 M

H
 J

IT
s
 (

%
)

P
e

rc
e

n
a

tg
e

 o
f

In
c
re

a
s
e

d
 M

H
 J

IT
 T

im
e

 (
%

)

Percentage of Reduced MH JITs
Percentage of Increased MH JIT Time

Figure 15. Percentage of Reduced MH Warm JITs vs. Per-
centage of Increased MH Warm JIT Compilation Time.

some tests (e.g., 14-nsieve-bits and 8-primes), MH JIT compi-
lation time increases more than four times. The explanation
is that MH JIT compilation time is largely determined by
the transformation method’s complexity (e.g., the number
of if-else branches and exception handlers), while the selec-
tion policy with maximal bytecode size could not completely
avoid complex MH generation. Although the size of queue
bytecodes for fused MHs is still less than maximal bytecode
size, these bytecodes might have complex structures and
worsen TR MH compilation.

8 Related Work
Both method handles and invokedynamic instruction were
proposed in JSR 292 for dynamically typed languages on the

JVM. An early work is Rose’s work [18], which summarizes
the “pain points” of implementing dynamic JVM languages,
and outlines all aspects of JSR 292 (e.g., implementation and
optimization). Thalinger and Rose detail the instruction im-
plementation in OpenJDK 7 [20]. Heidinga demonstrates
IBM’s implementation of invokedynamic and method handle
pipeline design [4, 5]. Roussel et al. [19] present a JSR292
implementation in Dalvik, a register-based virtual machine
for the Android OS.

JSR 292 has been adopted by many projects, such as
the Soot Framework [1], Golo language [17], and Nashorn
JavaScript Engine [15]. JRuby [13] is the most well-known
project using JSR 292, where JRuby interpreter dynamically
compiles Ruby scripts into JVM bytecodes. For dynamic
method calls, JRuby interpreter can emit invokedynamic in-
structions and build method handle graphs for method reso-
lution.

Inline caching (IC) is a significant optimization in the pro-
gramming language area. The idea of inline caching is to
remember previous method resolution results at call sites
to avoid dynamic method resolution expense in the future.
Inline caching was initially implemented in the Self inter-
preter [9, 10], and GraphJIT applies inline caching optimiza-
tion to graph nodes, whose children are mutable.

The idea of object inlining (i.e., object fusion) is to trans-
form heap data structures by inlining parent and child data
together. Dolby et al. [6–8] implemented object inlining for
a dialect of C++, and presented multiple compiler analysis
methods (i.e., local data flow, nCFA, and adaptive analysis)
to identify inlinable fields. In their solution, a child is se-
lected only if the child would the current node’s execution
every time. GraphJIT distinguishes to Dolby’s work in that
GraphJIT targets FTSDA graphs, and its node selection is
based on their entry counters and bytecode size.

Wimmer et al. provide another kind of object fusion for
HotSpot JVM to replace field loading by address arithmetic.
In their solution, garbage collection is modified to colocate
frequently accessed objects that have parent-child relation-
ships as groups in a consecutive region; co-allocation in the
client compiler allocates objects as a group; and the JIT com-
piler performs field loading optimizations (i.e., address cal-
culation and load folding) [21–23]. However, their solution
has two preconditions: 1) both parent and child must be in a
consecutive area, once they are created and 2) the relation-
ship should be immutable. Our solution does not have such
preconditions, and it only works on bytecode level that is
relatively independent from JVM internals.

9 Future Work
Our future work mainly focuses on GraphJIT tuning. The
main two tasks are to optimize MH selection policy to avoid
generating complicated queue bytecodes, and to reduce

VMIL’17, October 24, 2017, Vancouver, Canada Shijie Xu, David Bremner, and Daniel Heidinga

GraphJIT runtime expense (e.g., using asynchronous genera-
tion).

10 Conclusion
This paper presents a graph fusion solution to compile a
method handle graph into another equivalent but simpler
MHG on the bytecode level at program runtime, and to use
the new MHG to replace the original MHG for execution.
In the paper, we described each component (i.e., template
system and GraphJIT) for graph fusion, and detailed the se-
lection policy, as well as actions for mutable MHG structures.
With JRuby Micro-Indy benchmark and JavaScript Octane
benchmark on Nashorn, our experiment show the technique
1) can significantly speed up the typical MHG’s traversal by
31.53% via AOT compilation; 2) reduces the execution time
of Micro-Indy and Octane benchmarks by 6.28% and 7.73%
on the average; 3) fuses approximately 54% of all MHs; and
4) reduces the number of MHs for JIT compilation startup
by 52.1%, when GraphJIT is enabled.

Acknowledgments
This work is supported by the Atlantic Canada Opportunities
Agency (ACOA) through the Atlantic Innovation Fund (AIF)
program. Furthermore, we would also like to thank the New
Brunswick Innovation Fund for contributing to this project.
Finally, we would like to thank the Centre for Advanced
Studies - Atlantic for access to the resources for conducting
our research.

References
[1] Eric Bodden. 2012. InvokeDynamic Support in Soot. In Proceedings of

the ACM SIGPLAN International Workshop on State of the Art in Java
Program Analysis (SOAP ’12). ACM, New York, NY, USA, 51–55. DOI:
https://doi.org/10.1145/2259051.2259059

[2] CLBG. 2017. Computer Language Benchmark Game. http://
benchmarksgame.alioth.debian.org/. (2017).

[3] Da Vinci Machine Project. 2017. Da Vinci Machine Project. http:
//openjdk.java.net/projects/mlvm/. (2017).

[4] Dan Heidinga. 2014. Method Handle-An IBM implementation. http://
wiki.jvmlangsummit.com/images/a/ad/J9_MethodHandle_Impl.pdf.
(2014).

[5] Dan Heidinga. 2015. MethodHandle Compilation Pipeline.
https://www.jfokus.se/jfokus15/preso/J9%20MethodHandle%
20Compilation%20Pipeline.pdf. (2015).

[6] Julian Dolby. 1997. Automatic Inline Allocation of Objects. In Proceed-
ings of the ACM SIGPLAN 1997 Conference on Programming Language
Design and Implementation (PLDI ’97). ACM, New York, NY, USA, 7–17.
DOI:https://doi.org/10.1145/258915.258918

[7] Julian Dolby and Andrew Chien. 2000. An Automatic Object Inlining
Optimization and Its Evaluation. In Proceedings of the ACM SIGPLAN
2000 Conference on Programming Language Design and Implementation
(PLDI ’00). ACM, New York, NY, USA, 345–357. DOI:https://doi.org/
10.1145/349299.349344

[8] Julian Dolby and Andrew A. Chien. 1998. An Evaluation of Automatic
Object Inline Allocation Techniques. SIGPLAN Not. 33, 10 (Oct. 1998),

1–20. DOI:https://doi.org/10.1145/286942.286943
[9] Urs Hölzle. 1995. Adaptive Optimization for Self: Reconciling High Per-

formance with Exploratory Programming. Ph.D. Dissertation. Stanford,
CA, USA. UMI Order No. GAX95-12396.

[10] Urs Hölzle and David Ungar. 1994. A Third-generation SELF Implemen-
tation: Reconciling Responsiveness with Performance. In Proceedings
of the Ninth Annual Conference on Object-oriented Programming Sys-
tems, Language, and Applications (OOPSLA ’94). ACM, New York, NY,
USA, 229–243. DOI:https://doi.org/10.1145/191080.191116

[11] IBM JIT Compiler. 2017. IBM Just-in-time Compiler for Java.
https://www-304.ibm.com/partnerworld/wps/servlet/download/
DownloadServlet?id=Hvdi$ITAyXHiPCA$cnt&attachmentName=
IBM_just_in_time_compiler_for_java.pdf. (2017).

[12] J2SE 7: MethodHandle. 2017. Method Handle (Java Platform
SE 7). https://docs.oracle.com/javase/7/docs/api/java/lang/invoke/
MethodHandle.html. (2017).

[13] JRuby. 2013. JRuby. http://jruby.org/. (2013).
[14] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2013.

The Java Virtual Machine Specification, Java SE 7 Edition (1st ed.).
Addison-Wesley Professional.

[15] Nashorn. 2017. OpenJDK Nashorn Project. http://openjdk.java.net/
projects/nashorn/. (2017).

[16] Octane. 2017. Octane Benchmark. https://developers.google.com/
octane/. (2017).

[17] Julien Ponge, Frédéric Le Mouël, and Nicolas Stouls. 2013. Golo, a
Dynamic, Light and Efficient Language for Post-invokedynamic JVM.
In Proceedings of the 2013 International Conference on Principles and
Practices of Programming on the Java Platform: Virtual Machines, Lan-
guages, and Tools (PPPJ ’13). ACM, New York, NY, USA, 153–158. DOI:
https://doi.org/10.1145/2500828.2500844

[18] John R. Rose. 2009. Bytecodes Meet Combinators: Invokedynamic on
the JVM. In Proceedings of the Third Workshop on Virtual Machines and
Intermediate Languages (VMIL ’09). ACM, New York, NY, USA, Article
2, 11 pages. DOI:https://doi.org/10.1145/1711506.1711508

[19] Gilles Roussel, Remi Forax, and Jerome Pilliet. 2014. Android 292:
Implementing Invokedynamic in Android. In Proceedings of the 12th
International Workshop on Java Technologies for Real-time and Embed-
ded Systems (JTRES ’14). ACM, New York, NY, USA, Article 76, 11 pages.
DOI:https://doi.org/10.1145/2661020.2661032

[20] Christian Thalinger and John Rose. 2010. Optimizing Invokedynamic.
In Proceedings of the 8th International Conference on the Principles and
Practice of Programming in Java (PPPJ ’10). ACM, New York, NY, USA,
1–9. DOI:https://doi.org/10.1145/1852761.1852763

[21] Christian Wimmer and Hanspeter Mössenböck. 2007. Automatic
Feedback-directed Object Inlining in the Java Hotspot™Virtual Ma-
chine. In Proceedings of the 3rd International Conference on Virtual
Execution Environments (VEE ’07). ACM, New York, NY, USA, 12–21.
DOI:https://doi.org/10.1145/1254810.1254813

[22] Christian Wimmer and Hanspeter Mössenböck. 2008. Automatic
Array Inlining in Java Virtual Machines. In Proceedings of the 6th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO ’08). ACM, New York, NY, USA, 14–23. DOI:
https://doi.org/10.1145/1356058.1356061

[23] Christian Wimmer and Hanspeter Mössenbösck. 2010. Automatic
Feedback-directed Object Fusing. ACM Trans. Archit. Code Optim. 7, 2,
Article 7 (Oct. 2010), 35 pages. DOI:https://doi.org/10.1145/1839667.
1839669

[24] Shijie Xu, David Bremner, and Daniel Heidinga. 2015. Mining Method
Handle Graphs for Efficient Dynamic JVM Languages. In Proceedings
of the Principles and Practices of Programming on The Java Platform
(PPPJ ’15). ACM, New York, NY, USA, 159–169. DOI:https://doi.org/
10.1145/2807426.2807440

https://doi.org/10.1145/2259051.2259059
http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/
http://openjdk.java.net/projects/mlvm/
http://openjdk.java.net/projects/mlvm/
http://wiki.jvmlangsummit.com/images/a/ad/J9_MethodHandle_Impl.pdf
http://wiki.jvmlangsummit.com/images/a/ad/J9_MethodHandle_Impl.pdf
https://www.jfokus.se/jfokus15/preso/J9%20MethodHandle%20Compilation%20Pipeline.pdf
https://www.jfokus.se/jfokus15/preso/J9%20MethodHandle%20Compilation%20Pipeline.pdf
https://doi.org/10.1145/258915.258918
https://doi.org/10.1145/349299.349344
https://doi.org/10.1145/349299.349344
https://doi.org/10.1145/286942.286943
https://doi.org/10.1145/191080.191116
https://www-304.ibm.com/partnerworld/wps/servlet/download/DownloadServlet?id=Hvdi$ITAyXHiPCA$cnt&attachmentName=IBM_just_in_time_compiler_for_java.pdf
https://www-304.ibm.com/partnerworld/wps/servlet/download/DownloadServlet?id=Hvdi$ITAyXHiPCA$cnt&attachmentName=IBM_just_in_time_compiler_for_java.pdf
https://www-304.ibm.com/partnerworld/wps/servlet/download/DownloadServlet?id=Hvdi$ITAyXHiPCA$cnt&attachmentName=IBM_just_in_time_compiler_for_java.pdf
https://docs.oracle.com/javase/7/docs/api/java/lang/invoke/MethodHandle.html
https://docs.oracle.com/javase/7/docs/api/java/lang/invoke/MethodHandle.html
http://jruby.org/
http://openjdk.java.net/projects/nashorn/
http://openjdk.java.net/projects/nashorn/
https://developers.google.com/octane/
https://developers.google.com/octane/
https://doi.org/10.1145/2500828.2500844
https://doi.org/10.1145/1711506.1711508
https://doi.org/10.1145/2661020.2661032
https://doi.org/10.1145/1852761.1852763
https://doi.org/10.1145/1254810.1254813
https://doi.org/10.1145/1356058.1356061
https://doi.org/10.1145/1839667.1839669
https://doi.org/10.1145/1839667.1839669
https://doi.org/10.1145/2807426.2807440
https://doi.org/10.1145/2807426.2807440

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 Invokedynamic Instruction
	2.2 Invokedynamic and Method Handle Graphs

	3 System Structure
	4 Method Handle Template System
	4.1 Template Implementation
	4.2 Source Bytecodes Sharing

	5 GraphJIT Compilation
	5.1 Field Context Construction
	5.2 Dynamic Bytecode Generation
	5.3 Activation of New Graphs

	6 Runtime Optimization
	6.1 MH Node Selection Policies
	6.2 Mutable Nodes and Inline Caching

	7 Evaluation
	7.1 Benchmarks
	7.2 Environment Setup
	7.3 Execution Time and Execution Score
	7.4 Effectiveness for Micro-Indy

	8 Related Work
	9 Future Work
	10 Conclusion
	Acknowledgments
	References

